Contract for Group E - Banking system
Design based contract

Created by:

Created by:
Kasper Karstensen
Nicklas Hemmingsen
Mathias Valling

Mads Heckmann

E-mail address

nhh777@gmail.com

Table of contents

© 0N

Introduction

Vision

Use case model

3.1. Use-case diagram

3.2. Brief use-case descriptions
3.3. Fully dressed use-case
Domain Model

Design Class Diagram

5.1. Description of Design Class Diagram
5.2. Object Constraint Language
Sequence Diagram

State Diagram

Contracted Party’s work

Glossary

1. Introduction

The design based contract is based on an application for a newly formed bank, which needs a
system to manage the clients’ accounts.

The application should be accessed as a local Java client. The application is meant to be a
simplified system to manage the clients of a bank and their accounts. The user of the system is
a bank teller or another employee of the bank who has the rights to create accounts and transfer
money between them.

The use case model describes the functionality needed for the system and the actors of the
functionality. For the implementation of a use case we have made a fully dressed use case
which in detail describes all the needed information about the particular transaction.

2. Vision

It should be possible for the user of the application to create new clients and accounts, and
manage currency transactions, i.e. making withdrawals, deposits and money transfers between
accounts. The system must implement the specified rules for transactions, which are a
maximum withdrawal of 1000 DKK on an account which has a positive balance, that means that
no accounts can have more debt than -999 DKK.

A client is able to have several accounts, and all transactions should be registered on their
respective accounts, so the bank employee can see a brief history of transactions on a certain
account.

3. Use case model

3.1 Actor descriptions

Primary actor

Bank employee
A bank employee handles transaction between information regarding customers and the banking

system.

Stakeholder

Customer
A customer is a person who has or wants an account in the bank.

Use-case diagram

Banking system

Creating client

Creating account

W\

List a client's account's
Bank employee

Deposit money on account

Withdraw money from an
account

74

Transfer money between
owners accounts

3.2 Brief use-case descriptions

UC 1: Creating client
e Actor: Bank Employee
e Brief description: Employee creates a new client in the banking system.

UC 2: Creating account
e Actor: Bank Employee
e Brief description: Employee create a new account for an existing client in the banking
system.

UC 3: List a client’s accounts
e Actor: Bank Employee
e Brief description: The employee get a list of a clients accounts from the banking system.

UC 4: Deposit money to account
e Actor: Bank Employee
e Brief description: The employee make a deposit for a customer on a given account

UC 5: Withdraw money from an account
e Actor: Bank Employee
e Brief description: The employee withdraw money on a given account for a customer

UC 6: Transfer money between owners accounts
e Actor: Bank Employee
e Brief description: The employee transfer money from on account to another account on
the same clint

3.3 Fully dressed use-case

UC:5 Withdraw money from an account

Use case section Comment

Use case name Withdraw money from an account

Scope System

Level User

Primary Actor Employee

Stakeholder and interests Customer

Preconditions Customer has a client and a account with a

positive balance.

Main success scenario 1. Customer provides
accountnumber, and a amount
he/she want to withdraw.

2. Employee inputs given information
in the banking system.

3. The bank system check if the
account balance is greater than 0.

4. The system withdraw the amount
from the account.

5. Employee gets the money from the
banking system.

6. Customer gets the money from the

employee.
Postconditions The account is updated with a new
balance.
Extensions 3a. Employee withdraw more than 1000:

1. System make an error msg.

Employee asks customer of a new

amount less than a 1000.

Employee withdraw the new

amount.

Return to step 4 in Main Success

Scenario.

4a. System error while withdrawing

money:

1.

2.

The system make a rollback
The system give a error msg

Return to step 2 in Main Success
Scenario.

Special Requirements

The customer is identified by an
accountnumber.
The transaction has an identified ID

4. Domain Model

Hamds money to client

1
;3
-withdraws money from account
Account
_balance L.x 1 BankEmployee 1
-bankAccountNumber
1.+ [interestRate Transfer money to account
1 1
1
1 .
Depositiethod
el Client
1 -name -amount
—customerMumber
-RKI_Record
1 1
" *
1
Cheque Physical Money
-chegueNumber
-signiture
®
'

In this domain model we have a BankEmployee that act like a controller since he/she is the only
thing that interactor with all other components. it is important to understand that in this system
the client is a physical person and that we handle physical money in the system.

DepositMethod has a one to many relation with both Cheque and PhysicalMoney since it is
accepted that a client want to deposit more than one physicalMoney or Cheque. the Client hold a
one to many relation with cheque and physicalMoney as well, and with Account since the client
may have more than one account and the client can have more then one cheque/physicalmoney
he/she want to deposit. The bank employee can only handle one depositmethod at a time but the
employee many handle more than one account if needed.

5. Design Class Diagram

Boundary
Gul Ertity
ClientDTO
+ withdraw(accourtiumber: String, amount: float, clienthiumber: String) @ ClientDTo .
I
t | - name: String
' - clientMurnber: String
H - account: AccourkDTO
Il
b |
Cantrol I + setBalance{amourk: Hoat) : void
0.1 , + gebficcourt() | AccountDiTO
| +addéccount(0T0: AccountDTO) : void
winterface '
IController ' 1)’:\ ok
I
! i
+ nethdrandaccountlumber: Sking, amouwné: foal, cleniVumber: String) ; ClantOTo . |
']
Jay ' !
']
N 1
H ' i
! i |
']
N 1
: ' i
I
N Vi 1+ i
I
|
Controller AccountDTO \
I
I
- atcounthumber: Steing \
4 withdrawiaccountiumber: String, smount: Foat, dienkhumber: Strng) @ ClereDTO - balance: Float '
I
I
1 I
fmmmm--- F---= i
' i
'
|
"
H I
' '
1 ' |
]
WithdrawManager 1
I
|
'
I
+ withdraw zccountMumber: Strng, amount: float, chentMumber: String) : ClientDTO F= = = = 7 - !
1
Cratasource

1

cintarface s
IDatasourceFacade

+ FndChantychentiumber: Strng) : ChentDIO
+ sthicreniaccountember String, amount: foat, clendiicmber: Stoingd © vod’

B

DatasourceFacade

+FindClisnt{clentMurmber : String) @ ClientDTo
+ withdrad accounbumer: String, smeunt: Foat, ciersMumber: String) @ void

DataStorage

+ DataStorage(b_api: IBankStoragedPT)
+ withdraw{accountMumber: String, amount: float, chertNumber: String) : woid
+ findilient{clienthurmbes: Skring) @ ClientDTo

1

1

=inberface

IBankStorageAPl

+ witharani'cl [0 ShantoTo} : void
+ FndChent(chenthumber: String} ; ChantDTO

FileHandler

+ readChentFromFile(f; Fle) ; File

+ readAcoountEromFile(F: Fike) : Fle

+ wribeCiers{dient: Chent) @ woid
“+wribsdccountiaccount: Sccount) @ void
- creatsFie() : File

+ addaccounit{aDTO: AccountDTO) ¢ woid

1

BankStorageAP|

+finddlisnt{ClertMumber: String} : ClentDTo
+wathidrana cDTO: ClientOTo) « ChenkDTO

10

5.1 Description of Design Class Diagram

We follow a BCE pattern with a added datasource layer to handle the persistence of data. We
use interfaces in the program, to give the possibility of change. If we decide later on we want a
relational database all we would need to do would be to change out the API with another api that
implements the same interface.

5.2 Object Constraint Language

GUI
Invariance: Not defined
withdraw()
Preconditions: User has entered the information
Postconditions: Balance has been updated
Controller
Invariance: Not defined
withdraw()
Preconditions: accountNumber and clientNumber must be a valid String, amount <= 1000 &&
amount >0
Postconditions: Balance has been updated
WithdrawManager
Invariance: Not defined
withdraw()
Preconditions: accountNumber and clientNumber must be a valid String, amount <= 1000 &&
amount > 0

Postconditions: Balance has been updated
DatasourceFacade

Invariance: Not defined

findClient()
Preconditions: The client with the clientNumber must exist in the file
Postconditions: client has been found

11

FileHandler

Invariance: Not defined
readClientFromFile()
Preconditions: file exist
Postconditions: client found
readAccountFromFile()
Preconditions: file exist
Postconditions: account found
WriteClient()
Preconditions: client exist
Postconditions: client updated in file

ClientDTO

Invariance: accountDTO is an AccountDTO, name must be a String, clientNumber must be a
String
setBalance()
Preconditions: amount <= 1000
Postconditions: balance = balance - amount
addAccount()
Preconditions: ClientDTO must exist
PostConditions: Account added to file

AccountDTO

Invariance: balance >= -999
Preconditions: Not defined
Postconditions: Not defined

*Some classes do not show all methods or itself, as it is redundant because the method is just called through the
system

12

6. Sequence Diagram

26Ul = Controller T WithdrawManager T DatasoruceFacade
withdraw{accountNumber: String, amount: float. chientNumber: String) withdraw(accountNumber: String, amount: float, chentNumber: String) 1
- findClienticlientNumber: String)
-

ClientDTQ cDTO

L T T)
S withdrawiaczounthumber: String, amount: float, clientNumber String
~ -
R it
FEEUEAN SESE SRS AN SENE SRS VEEN SESE SRS SRy o
ClientDTO
ClientDTO i R I AN U S S A R A N
M m e e e S e e
T DatasoruceF acade T Data Storage 7 BankStorageAP! T FlleHandler
findClient(clientNumber String) fndCientichentiurnber: Sting) Ch ntNUmb g ARRS viog)
JI
F AccountdTO
lieniDTO cOT :
77777777777777777777777777 -
= L ClientDTO
aE L PEEEN NS ENEY RER N E i DEER ERE SERN EERN B I m—m—m o GeDO_______
witheaw{sceounthumber. Sking, amount foat clientNumber. Suing
it o it float, chenthumber. S
. mount float,chentNumber: Srng)
din N amous SeniNumber: Siri
7NN ARER fARN BRRN RNRE Rp ARANARRYRARNE
,,,,,,,,,,,,,,,,,,,,,,,,,, e - e s e Ry gy mn pan AR O Eo T E Ao T T T RS a farT aery e
getAce:
AccountDT

The sequence Diagram show the main success scenario described for UC:5 Withdraw money
from an account. The bank employee types in the user information and how much money the
client want to withdraw. Then we call the controller which delegate the job to a withdrawManager.
The withdrawManager calls the datasoruceFacade to get the stored client and account
information. The filehandler reads the information and return a DTO object. The withdraw

13

manager checks the information and if the balance is positive and the amount is not higher than
1000 dkr then we will withdraw the money by saving the new amount on the users account that
will be stored in the file. Here there should had been an if statement in case of an error when
doing the check so we return a message to the GUI, but for some reason our UML tool would not
allow us to make one. We update the new balance in the clientDTO’s accountDTO and send it

to the GUI so it can be used to show on a result screen and maybe be printed for the customer.
Normaly a clientDTO can have more accounts but to limit the codding a littel a clientDTO will just
have one account in this example.

We have decided not to show setters when adding the stored data to the DTO’s and getters
when the withdrawManager check the balance.

If you want to be able to have a better look at the diagram it can be found at the following link:

https://repository.genmymodel.com/kaboka/BankSystemSequenceDiagram/defaultDiagram/_Qi
Nk8VqvEeS18gaWES5MM-A

14

7. State Diagram

[Withdraw=1000 Il Balance<0]

[Withdraw]

.—) Open Overdrawn

[Reopen]

Closed 4)@)

State diagram over the full dressed use-case scenario

8. Contracted Party’s work

The contracted party work is to make the fully dressed use-case: UC5, it is important that the
code follow the given diagrams. The code made for the withdraw money method has to save any
balance in the DTO object before using the withdrawManager to check the balance and store the
new data in the file. It is also important to validate user input. This validation needs to check if the
balance on an account is positive and that the amount wanted to withdraw is less than a 1000
DKK. Any account in the system may at most have a negative value of 999 DKK. The contracted
party must deliver the code for the withdraw functionality of the application.

9. Glossary

15

Account number - the number used to ID a given account, the number is made of 12 chars.

Client - is the customer.

Cheque - Technically, a cheque is a negotiable instrument instructing a financial institution to pay
a specific amount of a specific currency from a specified transactional account held in the
drawer's name with that institution.

UC+Number: Use case and which number it is.

16

